
Software Quality Assurance in CMM and XP-
A Comparative Study

CH.V. Phani Krishna and Dr. K.Rajasekhara Rao
CSE Department, KL University, Guntur dt., India.

Abstract Software Quality Assurance is a planned and
systematic set of activities necessary to provide adequate
confidence that requirements are properly established and
products or services confirm to specified standards.
Successful software engineering strongly depends on the
delivery of high quality software. In the present paper, we
compare Capability Maturity Model (CMM) and Extreme
Programming (XP) regarding their software quality support
in terms of software quality development and software
quality assurance and also we presented Software Quality
Assurance Proposed by ISO 9000-3.

1. INTRODUCTION:
According to the definition of Boehm [1] – “Software
engineering is the application of science and mathematics
by which the capabilities of computer equipment are
made useful to man via computer programs, procedures
and associated documentation”.
Successful software engineering strongly depends on the
delivery of high quality software. The support of software
quality in a software development process may be
considered as two facets: one by developing techniques
which is used in the development of high quality software
and the other by developing techniques which assure the
desired quality attributes in the existing software.
The software quality engineering focuses on the processes
involved in the development and establishment of
software quality. Software quality engineering includes
software quality development and software quality
assurance. Software quality development consists of
requirements engineering, system and software design
and implementation. Software quality assurance consists
of software quality assurance, quality management and
verification and validation. Software quality is achieved
by three approaches: testing and static analysis and
development approaches. The integration of all three
approaches is the most desirable approach.
 Software quality assurance is an umbrella activity that is
applied at each step in the process of building the
software. It is a planned and systematic set of activities
necessary to provide adequate confidence that
requirements are properly established and products or
services confirm to specified standards”. Software quality
assurance is defined as “A planned and systematic pattern
of actions that are required to ensure quality in software
[2].”
Different users think differently about the quality of
software. The end-user expects the software to help him
to do the job faster and easier with adequate help. The
buyer expects the software to meet the specifications

within the contract terms. The developer attempts to trace
defects and focuses faster development as well as higher
productivity. The maintainer expects software to be
understandable, testable, and modifiable, with all
documentation.
The characteristics of software quality in product
transition are reusability, portability and interoperability.
The characteristics of software quality in product revision
are maintainability, adaptability and expandability. The
characteristics of software quality in product operation
are usability, security, efficiency, correctness and
reliability. The attributes of software quality are
manageability, efficiency, safety, expandability,
reliability, flexibility and usability.
There are quantitative as well as qualitative benefits in
maintaining quality assurance. The Quantitative benefits
are reduced costs, greater efficiency, better performance,
less unplanned work and fewer disputes. The Qualitative
benefits are improved visibility and predictability, better
control over contracted products, improved customer
confidence, better quality, problems show up earlier and
reduced risk.

2. SOFTWARE QUALITY ASSURANCE ACTIVITIES:
 Application of technical methods.
 Conduct of formal technical reviews
 Software Testing
 Enforcement of standards
 Control of change
 Measurement
 Record keeping and reporting

3. SOFTWARE QUALITY ASSURANCE PROPOSED BY ISO

9000-3:
 ISO 9000-3 is the standard of the ISO 9000
series that is most relevant to software development and
maintenance. Organizations typically use ISO 9000
standards to regulate their internal quality systems and
assure the quality systems of their suppliers. ISO
proposes a quality assurance manual that consists of
management responsibilities, a set of measurements,
analysis and improvement activities and required
documentation. An ISO 9000 organization should have
implemented a Quality Management System (QMS) that
is continuously maintained for effectiveness and process
improvement. The effectiveness of the Quality
Management System should be improved by the use of
quality, policy, quality objectives, audit results, analysis
of data, corrective and preventive actions and

 V. Phani Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2915-2919

2915

management reviews. The organization defines and
documents its policy which provides the overall
objectives for an effective Quality Management System.
The quality policy should be relevant to the organization
goals and expectations of its customers. ISO 9000
requires an organization to plan and perform audits. The
results of audits are communicated to management and
deficiencies found are corrected.
ISO 9000 states that organizations must establish
adequate statistical techniques and use them to verify the
acceptability of the process capability. This is also called
measurement. According to ISO 9000-3 “there are
currently no universally accepted measures of software
quality”. The auditors can accept the use of statistical
tools or any consistently collected and used data.
The organization should implement and maintain
documented procedure to initiate corrective and
preventive actions. Corrective action procedures define
the requirements for:
 Reviewing non-conformities including customer

complaints.
 Determining causes of non-conformities.
 Evaluating the need for action to ensure that non-

conformities do not recur.
 Determining and implementing the action needed.
 Records of the results of action implemented.
 Review of corrective action implemented.

The SQA manager is responsible for corrective and
preventive actions and a feedback system should be used
to provide early warnings of quality problems. Preventive
action procedures define requirements for:
 Determining potential non-conformities and their

causes.
 Evaluating the need for action to prevent occurrence

of non-conformities.
 Determining and implementing the action needed.
 Records of the results of action implemented.
 Reviewing preventive action implemented.

The QMS documentation structure can be described at
five levels:
 Level1: is maintained in the form of quality policy.
 Level 2: documentation is maintained in the form of
quality assurance manual.
 Level 3: consists of quality procedure.
 Level 4: contains work instructions.
 Level 5: documentation is maintained as
records/reports.

4. CAPABILITY MATURITY MODEL:
Software process capability describes the range of
expected results that can be achieved by the following
process [3]. The process capability of an organization
determines what can be expected from the organization in
terms of quality and productivity. The goal of process
improvement is to improve the process capability. A

maturity level is a well defined evolutionary plateau
toward achieving a mature software process. Based on the
empirical evidence found by examining the processes of
many organizations, the CMM suggests that there are five
defined maturity levels for software process. These are
initial (level 1), repeatable (level 2), defined (level 3),
managed (level 4) and optimizing (level 5). The CMM
framework says that as process improvement is best
incorporated in small increments, processes go from their
current levels to the next higher level when they are
improved. Hence, during the course of process
improvement, a process moves from level to level until
reaches level 5.

5. SOFTWARE QUALITY ASSURANCE PROPOSED BY

CMM:
It is well known the CMM describes an evolutionary
improvement path to a mature disciplined process.
CMM defines key practices to improve the ability of the
organization to meet goals for cost, functionality and
quality. SQA activities are defined at level 2.
According to CMM the purpose of software quality
assurance (SQA) is to provide the management with
appropriate visibility into the process being used by the
software project and of the products being built. It is
required that the project follows a return organizational
policy for implementing the SQA.
CMM defines eight activities to be performed as follows:
 A SQA plan is prepared for the software project

according to documented procedure.
 SQA’s group activities includes:

o Responsibilities and authority of SQA group
o Resource requirements of SQA group
o Schedule and funding of the project.
o Participation in establishing the software

development plan (SDD).
o Evaluations to be performed.
o Audits and reviews to be conducted.
o Projects standards and procedures forming basis

for SQA reviews.
o Procedures for documenting and tracking non-

Compliance issues.
o Documentation to produce.
o Method and frequency to provide feedback to

other related group.

 The SQA group participates in the preparation

and review of the project’s software
development plan, standards and procedures and
audit the software project.

 The SQA group audits designated software work
products to verify compliance.

 The SQA group periodically reports the result of
its activities to the software engineering group.

 Deviations identified in the software activities
and software work products are documented and
handled according to documented procedure.

 V. Phani Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2915-2919

2916

 The SQA group conducts periodic reviews of its
activity and findings with customers SQA
personnel as appropriate.

CMM levels key process areas and their purpose:
5.1 Initial:
This is the starting point for use of a new or
undocumented, repeated process. Little documentation is
necessary if any processes and procedures take place.
Success is only achieved by the heroic actions of team
members.
When to use:
Used for a kind projects of very limited scope.
5. 2 Repeatable:
The process is at least documented sufficiently such that
repeating the same steps may be exempted. Enough
documentation exists that the QA process is repeatable.
When to use:
This is used for any project that will be done again,
whether as an upgrade or a somewhat similar variation.
5. 3 Defined:
The process is defined/confirmed as a standard business
process, and decomposed to levels 0, 1 and 2 (the latter
being Work Instructions).QA documentation and

processes & procedures are standardized. Templates exist
for all documentation and a QA "system" exists.
When to use:
This is critical for a QA department that must provide QA
for multiple projects. This avoids reinventing the wheel
for each project.
5. 4 Managed:
The process is quantitatively managed in accordance with
agreed-upon metrics. The exact time & resources required
to provide adequate QA for each product is known
precisely so that timetables and quality levels are met
consistently.
When to use:
This requires an existing data set based on previous QA
projects. This level can only be achieved by well
documented experience.
5. 5 Optimizing:
Process management includes deliberate process
optimization/improvement. QA processes and procedures
are understood well enough to be refined and streamlined.
When to use:
This should be actually used in every stage. In Level 5,
this is the only thing left to work on.

Optimizing(5)
 Process change management
 Technology change management

 Defect Prevention

Managed(4)
 Software quality management

 Qualitative process managment

Defined(3)
 Peer reviews

 Inter-group coordination

 Software product engineering

 Integrated software management

 Tranning program

 Organization process definition

 Organization process focus

Repeatable(2)
 Software configuration management

 Software quality assurance
 Software project tracking and oversight

 Software project planning

 Requirement managment

Initial(1)

 V. Phani Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2915-2919

2917

It would be enlightening to conduct a CMM assessment
of a team successfully practicing XP. In fact, XP team
would achieve a maturity level 2 or better. CMM level 2
is about managing project requirements and schedules
effectively and repeatedly. XP claims to do just that,
using story cards and a planning game [4].
Thus, the software engineering goals are worthy and they
can even be implemented with lightweight methodologies
where appropriate. XP is compatible to CMM as well.
Software quality assurance consists of Software quality
assurance, quality management and verification and
validation [5]. Software quality is achieved by three
approaches: Testing, Static analysis and development
approach. The integration of all the three approaches is
the most desirable approach. A different categorization of
approaches towards software quality regards four ways to
establish software quality: Software quality via better
quality evaluation, better measurement, better processes
and better tools [6].
Large-scale quality models like Capability Maturity
Model (CMM) or ISO-9001 tend to form a SQA in terms
of a “process police”. [7] SQA takes care only that the
process requirements are met but does not consider the
quality of the process itself. Instead of SQA in terms of
CMM or ISO 9001 a better solution is to embed quality
evaluation in the development process.
 XP require certain adaptations in order to fulfill CMM
requirements specialized maturity models for XP are
introduced by combining Capability Maturity Model
(CMM) with Personal Software Process (PSP) [8, 3].
Therefore, instead of eliciting SQA in terms of CMM a
better solution can be embedded for quality evaluation in
XP [9, 10].

6. SOFTWARE QUALITY ASSURANCE PROPOSED BY XP:
6.1. Iterative Software Development:
To establish higher software quality, a software
development process has to use an iterative and
incremental development approach. By using iterative
approach a process can gain more flexibility in dealing
with changing requirements or scope. The Short Releases
of the product force early feedback from the customer as
well as stakeholders which is important for improvement
of overall quality of the software. XP builds on a very
strict iterative approach limiting the time needed to
encounter errors and forces developers to fix the problem
as soon as possible.
6.2. Quality As a Primary Objective:
XP software development process defines quality as a
major objective to improve overall quality of the
software. Quality targets have to be defined by involving
project team members and customer (On-Site Customer).
Thus the quality goals become achievable and
measurable.
6.3. Continuous Verification of Quality:
This includes extensive testing. Besides internal unit
testing, external acceptance tests with the customer are

needed too, in order to verify that the product fulfills the
needs and requirements of the customer (Test-Driven
Development).
6.4. Customer Requirements:
The requirements of the customer who normally does not
have a deep technical knowledge have to be considered,
so that developers are able to build an application based
on that information. Thus it is necessary that the project
team understands the customer and his business.
Otherwise it is not possible to implement the customer
needs accurately. XP teams focuses on the customer
needs and requirements throughout the entire project by
means of communication and by framing user stories.
6.5. Architecture Driven:
Architecture of a system has a major impact on the
overall quality of the product. Using a simple well-
designed architecture allows easy integration and reuse
(Simple Design and Continuous Integration).
6.6. Focus on Teams:
Focusing on team work also effects the motivation of
project members. Seeing everyone as an equally
important part of the project leads to a high identification
of the team members with the product. Hence the project
code is not owned by any single programmer but owned
by the team collectively (Collective Code Ownership).
6.7. Pair Programming:
Better solutions are more likely with Pair Programming
since two persons most likely have different perspectives
of the same problem and therefore they complement each
other in solving it. This approach saves time and
minimizes the number of errors. This is an explicit
practice of XP.
6.8. Tailoring with Restrictions:
Software development process should rely on core
elements. Building on these core elements the process
should adapt practices (tailoring) according to the project
type and project size (eg. RDP)
6.9. Risk management:
Risk management enables early risk mitigation and the
possibility to act instead of to react to problems and risks.
A well-defined risk awareness and mitigation
management form together an effective risk management
and is a key factor in achieving high product quality.

7. CONCLUSION:
Thus, Practices of XP support software quality
development as well as software quality assurance. XP
require certain adaptations in order to fulfill CMM
requirements specialized maturity models for XP are
introduced by combining Capability Maturity Model
(CMM) with Personal Software Process. However, much
software quality support is implicitly present in XP
principles.

References:
[1] B.W.Boehm. Software Engineering Economics. Prentice Hall,

Englewood Cliffs, NJ, 1981.

 V. Phani Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2915-2919

2918

[2] Ward, W.A., and Venkataraman.B, Some observations on Software
quality, in proceedings of the 37th annual southeast regional
conference (CD-ROM), ACM, 1999, Article No.2.

[3] Microsoft Cooperation: Microsoft Solutions Framework White
Paper, Microsoft Press, 1999.

[4] Huo, M., Verner, J., Zhu, L., Babar, M.A: Software quality and
agile methods. In proceedings of COMPSAC 04, IEEE Computer
Soc., 2004, pp.520-25.

 [5] Paulk, N.C: Extreme Programming from a CMM Perspective.
IEEE software, vol. 18, no.6, IEEE, Nov-Dec.2001, pp.19-26.

[6] Nawrocki,J.,Walter, B.,and Wojciechowski, A.: Toward maturity
model for Extreme Programming: In proceedings Euromicro
Conference, 2001.IEEE,2001,pp. 233-9.

[7] Baker, E.B., Which way, SQA? .IEEE-Software, vol.18, no.1; Jan.-
Feb. 2001; pp. 16-18.

[8] ManZoni, L.V.; Price, R.T.: identifying extensions required by
RUP(Rational Unified Process) to comply with CMM (Capability
Maturity Model) level 2 and 3. IEEE Transaction on Software
Engineering, Vol 29, no.2, IEEE, Feb.2003,pp.181-192.

[9] Pollice, G.: Using Rational Unified Process for small Projects:
Expanding Upon Extreme Programming. A Rational Software
White Paper, Rational, 2001.

[10] Runeson, P., Isacsson, P.:Software Quality Assurance Concepts
and Misconceptions, In Proceedings of the 24th EUROMICRO
Conference, IEEE Computer Soc, 1998, pp.853-9.

[11] Osterweil, L.J.: Improving the quality of software quality
determination processes, In the Proceedings of the IFIP
TC2/WG2.5 Working Conference on Quality of Numerical
Software. Assessment and Enhancement, Chapman & Hall,
London, 1997, pp.90-105.

 V. Phani Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2915-2919

2919

